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bstract

nfrared transparent optical fibers from the Te–As–Se system (TAS) exhibit a viscoelastic behavior at room temperature. The study of the change
f the radius of curvature of fibers, once the fibers are unrolled from the mandrel onto which they were rolled just after fiber-drawing, allows

he determination of constitutive laws both for the stress relaxation kinetics and for the delayed elasticity process. Whereas, a linear Burger’s

odel provides a good modelling of the stress relaxation stage, a stretched exponential function gives a better description for the delayed elasticity
ehavior. The room temperature viscosity of the fibers ranges from 3 × 1016 to 2 × 1017 Pa s and the time constant of the anelastic strain recovery
rocess is from 4 to 15 days.

2006 Elsevier Ltd. All rights reserved.
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. Introduction

Chalcogenide glasses are of paramount interest for night
isibility devices, for medical applications1–3 or for chemi-
al analyses because of their remarkable transparency in the
–12 �m range (second atmospheric window). Within chalco-
enide glasses, those from the tellurium–arsenic–selenium
ystem (TAS) are very resistant to devitrification and can
e drawn into optical fibers which offer exceptional trans-
arency in the mid infrared range. These fibers are used
s optical sensors to carry out fiber evanescent wave spec-
roscopy (so-called FEWS) to investigate, at molecular scale,
everal problems encountered in microbiology, or environmental
rotection.4,5

The mechanical properties of TAS glasses have been little

tudied so far.5,6 Noteworthy, because of their relatively low
g ranges, these glasses exhibit some viscoelastic effects at
oom temperature.6 Preliminary experiments on TAS fibers have
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hown that, as for Ge–Se glass,7–9 indentation creep occurs at
oom temperature, hardness is very low (∼1.4 GPa), and aging
reatments in air below Tg induce a dramatic decrease of the ten-
ile strength of the fiber.6 In this study, the viscoelastic behavior
f a TAS glass fiber is investigated by means of fiber bending
ests. This kind of test was used by Koide et al.10 to character-
ze mechanical relaxation and recovery in silicate glass fibers
uring an annealing below the glass transition temperature (Tg).
n the case of TAS fibers, both stress relaxation, when the fiber
s on the mandrel, and change of the radius of curvature, once
bers have been unrolled, occur at room temperature (due to

heir low glass transition temperature), within a time scale of
nly a few days for strain changes of 10−3. The amplitude
nd the kinetics of the rise of the radius of curvature were
ound to be strongly correlated to the kinetics of the relaxation
rocess occurring when the fibers were still on the rolling man-
rel. This phenomenon originates from delayed elasticity and
as studied as a function of the time spent on the mandrel as
ell as the recovery duration after the fiber was unrolled. A
onstitutive law was determined from the analysis of the data
n the light of standard viscoelasticity theory, which further
llowed for the prediction of the fiber deformation under service
onditions.

mailto:cedric.bernard@univ-rennes1.fr
dx.doi.org/10.1016/j.jeurceramsoc.2006.12.001
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Table 1
Main properties of the TAS chalcogenide glass

E (GPa) 16.9
Tg (◦C) (DSC method) 137
ρ (kg m−3) 4.9 × 103

α (◦C−1) −270.7 × 10−5
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sition temperature, in the range 140–310 ◦C, by a Rheotronic®

parallel plate viscometer (Theta industries, viscosity measure-

F
m

H (GPa) 1.4

oteworthy, this glass does not crystallise in standard thermal analysis.

. Materials and experimental procedures

The fibers were produced from a glass with Te2As3Se5
omposition. This composition exhibits a wide optical trans-
ission window, from 3 to 12 �m, and an excellent resistance

o devitrification during the drawing process avoiding optical
cattering losses and keeps good thermomechanical properties
glass transition temperature Tg = 137 ◦C). Raw materials with
9.999 elemental abundance were used for glass preparation as
etailed in a previous paper.11 In order to compensate for the
osses due to the further purification, 0.1% of As and 0.2% of
e in mass were added. Selenium and arsenic were purified of
emaining oxygen and hydrogen by the volatilization technique
y heating them at 240 and 290 ◦C, respectively under vacuum
or several hours. Afterwards, the mixture was distilled and then
aintained at 700 ◦C for 12 h in a rocking furnace to ensure
good homogenization of the liquid. Then the ampoules were
uenched in water and annealed near the glass transition temper-
tures (Tg) to avoid permanent mechanical stresses on cooling.
n this manner chalcogenide glass rods were obtained in sizes
f about 1 cm diameter and 10 cm length. The as-made compo-
ition of the glass was analysed by SEM (JEOL JSM 6301 F)
ith the energy dispersive spectroscopy method (EDS). And its

ctual composition after synthesis was (As, Se, and Te) = (29.08,
0.70, and 20.22%), in molar%. The fibers were made from these
ods using a drawing tower. Glass cylinders were heated up to
he softening temperature, and drawn to the appropriate diame-
er by selecting the best parameter combination of viscosity and
rawing speed. Some physical properties of the studied glasses

re given in Table 1. The present investigation was conducted
n uncoated fibers in order to avoid any possible influence of
he polymer coating on the behavior of the fiber. The diameter
f the fibers is about 400 �m.

m
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f
u

ig. 1. (a) Chronology of the test: at t = 0, a straight fiber is rolled on the mandrel; a
easured. (b) Photography of different fibers at the end of the test. Noteworthy, longe
eramic Society 27 (2007) 3253–3259

Fibers were cut in 150 mm long samples which were rolled
n a 100 mm diameter mandrel for a maximum of 32 days, and
hen removed and placed on the smooth and plane surface of a
aper grid (see Fig. 1(a)). The change in curvature was continu-
usly monitored by determining the coordinates of three points
elected on the fiber. This method leads to a ∼5% relative error.
ll the tests were performed at room temperature: 20 ± 0.5 ◦C.
Young’s modulus, E, and Poisson’s ratio, ν, of the glass were

etermined on a 10 mm thick, 10 mm diameter disk of the glass
sed for the fiber pre-form, by means of an ultrasonic echog-
aphy method, from the measurement of the longitudinal (Vl)
nd transversal (Vt) wave velocities using 10 MHz piezoelectric
ransducers. E and ν were calculated from the classical elasticity
elationships12:

= ρ
3V 2

l − 4V 2
t

V 2
l /V 2

t − 1
(1)

= 3V 2
l − 4V 2

t

2(V 2
l − V 2

t )
− 1 (2)

here ρ is the density of the material which was measured at
0 ◦C by the Archimedean displacement technique using CCl4
ith a relative error of ±0.5%. E and ν are characterized with
better than ±0.5 GPa and 0.01 accuracy (due to experimental

rror), respectively.
Raman scattering spectrometry was performed on a HR 800

aman spectrometer using a 632.82 nm wavelength, 13 mW
e–Ne laser. The excitation light was focused onto a 1 �m diam-

ter disk region. The scan duration was 60 s with a resolution of
00 lines/mm. The slot thickness was 125 �m, and the confocal
ole diameter was 1100 �m. A density filter OD2 was used to
ivide the power of the laser beam by 100 in order to restrict the
emperature rise of the sample.

The viscosity of the glass was measured, above the glass tran-
ent range: 108 to 1011 Pa s). The specimen was a 8 mm
iameter, 6 mm thick disk of the glass used for the fiber pre-
orm. The solver tool of Microsoft® Excel 2000 software was
sed to fit the experimental curves.

t t = t1, the fiber is unrolled and the evolution of its radius of curvature, R(t), is
r the relaxation time, smaller the radius of curvature at the end of the recovery.
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Fig. 4. Time dependence of the maximum strain in the fiber for different
relaxation times t1 (∼5% relative error). The maximum strain just after the
instantaneous elastic recovery is represented by the dash curve.
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ig. 2. Time dependence of the curvature radius for different relaxation times

1 (∼5% relative error). The curvature radius just after the instantaneous elastic
ecovery is represented by the dashed curve.

. Experimental results and discussion

The change of the radius of curvature of the fibers after
nrolling as a function of time is plotted in Fig. 2. The x-
oordinate of the first point of each recovery curve corresponds
o the time the fiber spent on the mandrel (relaxation time). For
ake of simplicity and for further use in constitutive laws, we
onverted the radius of curvature in terms of an apparent strain.
he maximum tensile strain in a bent fiber is located on the most
xternal line with respect to the center of curvature (the points
or which y = r according to Fig. 3) and is given by ε(t) = r/R(t),
here R(t) is the curvature radius and r the radius of the fiber.13

he evolution of ε(t) during the recovery period is plotted in
ig. 4. It is noteworthy that longer the fiber stays on the man-
rel, smaller (Fig. 1(b)) and slower the delayed recovery is and
maller the instantaneous elastic recovery is.

The fiber experiences a time-dependent stress, σ(t), which is
aximum at t = 0 (σ = σ0), i.e., just after being rolled on the man-

rel. As illustrated in Fig. 5, while the fiber is around the mandrel,
ubjected to a constant strain, the associated stress decreases
ccording to a relaxation decay, which could be described by the

aterial relaxation function ϕ(t) as: σ(t) = �0ϕ(t) for t ∈ [0,t1].
uring the delayed elastic recovery of the strain, i.e., after the
ber is unrolled, the fiber curvature radius increases and the

ig. 3. If the Bernoulli’s assumptions are admitted, the maximum value of the
ensile strain ε(t) in one section S of the rolled fiber is reached at the top of the
ber, i.e., at the point M, where r is the radius of the fiber and R its curvature
adius.
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ig. 5. The time dependence of strain and stress in the fiber during the whole
ending test.

orresponding strain is expressed as:

(t) = ε0 + εel(t1) + εd(t) for t ∈ [t1, ∞],

here εel(t1) = σ(t1)/E is the instantaneous elasticity component
nd εd is the delayed elasticity component (anelastic recovery)
f the creep compliance (see Fig. 6). Note that ε(t) tends toward
n asymptotic limit, ε∞, at large time.

The Burger’s viscoelastic model, composed of a series com-
ination of Maxwell and Kelvin cells (Fig. 7) provides a simple
odelling of the behavior. Four material parameters are intro-

uced, namely: E, the instantaneous elasticity modulus; η, the

niaxial viscosity coefficient; Ed and ηd the parameters of the
elayed elasticity part. The simple constitutive equations asso-
iated with this model are given in appendix. The instantaneous

ig. 6. Different stages of the variation of the strain vs. time. (A–B) Instanta-
eous elastic strain; (B–C) constant strain; (C–D) instantaneous elastic recovery;
D–E) recovery of the delayed elasticity. Once the test finished, the values of

el, εd, and εη = ε∞at time t1 can be directly measured on the curve.
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Fig. 7. Uniaxial viscoelastic Burger’s model. E is the instantaneous elasticity
modulus, η the unrecoverable uniaxial viscosity, Ed and ηd the parameters of
the delayed elasticity part, where subscript ‘d’ stands for delayed elasticity.
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ote that E is Young’s modulus of the glass and η is the viscosity coefficient
orresponding to an uniaxial loading (η ≈ 2(1 + ν)ηshear).

lastic strain just before the unrolling, εel(t1), can be easily mea-
ured from the experimental data and is given by: (see schematic
rawing Fig. 6)

el(t1) = ε(t1) − ε0 = r

R(t1)
− r

R0
(3)

here R0 is the mandrel radius.
εd(t1) and εη(t1) may be evaluated provided the experiment

s long enough (aging duration) for an asymptotic limit to
how up. Moreover, �(t1) can be estimated from Hooke’s law,
(t1) = Eεel(t1). Since fiber specimens were unloaded from the
andrel at different times t1, it is possible to draw relaxation

urves from all these data for a 32 days duration, and particu-
arly for σ(t) (Fig. 8) and εη(t) (Fig. 9). Besides, according to the
urger’s model, the time dependence of the stress σ(t) is given
y (see Appendix A):

(t) = σ0

α − β

[(
α − Ed

ηd

)
exp(−αt) −

(
β − Ed

ηd

)
exp(−βt)

]
(4)

ith α and β being the roots of the equation:

2 −
(

E + E + Ed
)

x + EEd = 0 (5)

η ηd ηd ηηd

The E value was measured on a bulk glass specimen (fiber pre-
orm). The best curve fitting between the experimental relaxation

ig. 8. Time dependence of the stress when the fiber is rolled on the mandrel
or the TAS glass (∼5% relative error).

W
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ig. 9. Time dependence of the dash pot strain during relaxation for the TAS
lass (∼5% relative error).

urves σ(t) and Eq. (4) is obtained with:

{E, η, Ed, ηd} = {16.9 GPa, 1.39 × 1017 Pa s,

5.51 GPa, 6.40 × 1015 Pa s}

The discrepancy between experiment and theory is less than
% (mean relative error). Moreover, the previously estimated
alues of σ(t) and εη(t) allow to estimate an experimental value
f η, ηexp, according to the relationship:

(t) = σ(t)

ε̇η(t)
(6)

Results presented in Fig. 10 show that the mean value of ηexp
s about 1017 Pa s which is close to the value evaluated with the

odel, supporting the suitability of the Burger’s model for the
escription of the stress relaxation stage (t < t1). Note that this
alue would correspond to a time constant, τ = η/E, of about 95
ays.

Regarding the strain-recovery process, ε∞ and ε1 being
xperimentally available (cf. Fig. 5), the strain evolution after t1
as modelled with the previously introduced Burger’s model.
hen the parameters of the Burger’s model are those deter-

ined from the stress relaxation stage, significant differences are

bserved between the experimental and the theoretical recovery
urves (Fig. 11). Indeed, in the beginning of the recovery stage,
ll the simulated strains rise faster and reach the asymptotic

ig. 10. Viscosity calculated from experimental results vs. time during relax-
tion for the TAS glass. The mean value after the first days is about 1017 Pa s.
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ig. 11. Comparison of the measured and simulated recovery curves for four
ifferent relaxation times.

alue sooner than the experimental ones. It means that the char-
cteristic time constant τd of the Kelvin cell (the only cell active
uring the recovery process), defined by: τd = Ed/ηd, is much
ower (τd = 1.2 days) than the one of the glass fiber. A single
urger’s model is hence unable to predict both the relaxation and

he recovery regimes of the fiber. In order to simulate the strain
ecovery, the Kelvin cell that minimises the gap between all the
xperimental and calculated values has been determined. This
ell is characterized by a time constant: τd

′ = 9.5 days. Fig. 11
hows a relatively good agreement between this model and the
xperimental data, except for the beginning. Most materials,
ncluding inorganic glasses, relax faster than would be expected
t the beginning of the relaxation process. De Bast and Gilard14

nd Scherer15 have shown that the Kohlraush–Williams–Watt
KWW) equation gives a better description in the latter case.
his non-linear stretched exponential function (Eq. (6)) shows
very fast kinetics in the beginning.

(t) = ε∞ exp

(
−
(

t

τKWW

)b
)

(7)

here b is the stretching parameter ranging from 0 (instanta-
eous elasticity) to 1, note that for b = 1, Eq. (7) reduces to a
elvin cell equation. The constant time τKWW is the time needed

or the system to reach 66% of its final state.
It is noteworthy that Kurkjian16 or Gy et al.17 proposed a

eneralised Maxwell model, composed of Maxwell cells linked
n parallel (six cells for the window glass for example), which
roved efficient to model the rheological behavior of a standard
oat glass at the beginning of the recovery stage. However, this
odel, which does not reflect more about the physics of the

eformation process, introduces many adjustable parameters,
nd was thus not found attractive in the present case.

Optimisation of b and τKWW by curve fitting to the recovery
urves leads to: b = 0.57 and τKWW = 6.6 days, but as seen in
ig. 11, this couple of values does not involve a suitable simu-

ation after a long relaxation. It highlights that a simple KWW
unction is not sufficient. Using the same optimisation proce-

ure for every recovery curve (a couple of (τKWW, b) for each
urve) provides a very good description of the recovery behavior
hatever the relaxation duration. Indeed, experimental and theo-

etical curves are almost overlapping (Fig. 11, the relative gap is

g
3
fi
d

ig. 12. �KWW and b parameters of KWW function as a function of time spent
n the mandrel.

ess than 2%). Moreover, Fig. 12 shows that b and τKWW values
re low for short times spent on the mandrel, which is consistent
ith the high kinetics observed at the beginning of the recovery
art. Further, for long relaxation durations, the slow kinetics of
he recovery is nicely modelled by high values of b and τKWW.
oteworthy, after 15 days relaxation, the value of b is close

o 1, meaning that the recovery behavior is nearly the same as
hat for a single relaxation time viscoelastic model (i.e. Kelvin
ell). Finally, the best description for the recovery stage is a
WW function with the changing parameters defined in Fig. 12.
lthough many authors already used the stretched exponential

unction to describe the behavior of inorganic glasses, only few
tudies tried to find a physical understanding for this partic-
lar behavior.18–20 Moreover, these theories have never been
xperimentally verified. Since we have not enough information
bout the TAS glass structure to relate the KWW parameters to
hysical phenomena, we attempted to investigate the material
tructure.

These results clearly show that the amplitude and the kinetics
f the decrease in the strain are strongly correlated to the dura-
ion of the relaxation process occurring when the fiber was still
n the rolling mandrel. This phenomenon could be explained by
rearrangement of the atomic structure of the glass during the

elaxation stage which would modify the behavior of the fiber
nce it is unrolled. In order to prove such a structural change,
aman scattering spectrometry was used both on an as drawn
ber and on a 6 months relaxed fiber, but the spectra obtained
id not show any difference between the two analysed structures.
AS glass is not totally transparent to the red light of the laser
wavelength of 632.82 nm), consequently, a part of the energy
s absorbed by the material that leads to a local rise of the tem-
erature. The reached temperature may be high enough to allow
he structure to relax locally, i.e., the analysed volume element

ay have lost its initial structure. Wang et al.21 investigated the
tructure of a Se–Ge glass by Raman scattering spectrometry
ith the same type of laser. The authors kept the temperature rise

o under only 3 ◦C by focusing the laser light onto a large rectan-

ular region (2 mm × 0.2 mm). The power density obtained was
W/cm2. In this study the power density, in spite of the OD2
lter, is about 16 kW/cm2. As a consequence, the measurements
id not characterize the structure of the fibers but the structure of
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ig. 13. Viscosity with respect to temperature, and the VFT equation approxi-
ation based on high temperature measurements.

he material relaxed by heating. Raman scattering spectrometry
ith a higher wavelength value or a larger focused region would
e more reliable to analyse the structure of TAS glasses.

The viscosity of the TAS glass was measured above Tg
140–310 ◦C) by a parallel plate viscometer. The results are
hown in Fig. 13 and compared with the viscosity measured
hrough the means of the fiber bending test at room tempera-
ure. The variation of the viscosity in the vicinity of Tg was
pproximated by a Vogel–Fulcher–Tamman (VFT) law22 which
s usually used to describe the temperature dependence of glass
iscosity: log(η) = 0.146 + 1039/(T − 44)). The units of the con-
tants are respectively: log(Pa s−1), log(Pa s−1) ◦C−1 and ◦C.
his VFT equation approximation was extrapolated down to

oom temperature and the large gap between this curve and the
xperimental value measured at 20 ◦C, illustrated on Fig. 13,
ighlights a deviation, below Tg, between the real viscosity vari-
tion and the VFT law based on measurements made above
lass transition range. This trend, already observed for differ-
nt kinds of inorganic glasses, can be explained as resulting
rom the change, with temperature, of the physical mechanisms
nvolved in viscous flow.23

. Conclusion

The viscoelastic behavior of TAS glass fibers has been investi-
ated. Fibers have been rolled during several days on a mandrel
nd their radius of curvature has been measured continuously
fter unrolling. It was observed that both amplitude and kinetics
f the delayed elastic recovery decrease when relaxation time
ncreases. Optimisation of a Burger’s cell leads to a good simu-
ation of the relaxation stage of the fiber. Moreover, the uniaxial
iscosity calculated (� ≈ 1017 Pa s) is consistent with the one
rawn from the measurements. The recovery period cannot be
imulated by a linear viscoelastic model because, on the one
and, it is too fast in kinetics at the beginning and, on the other
and, it is too dependent on the previous relaxation duration

ime. So, a KWW function in which the b and τKWW coefficients
hange as a function of the relaxation time t1 has been found to
e a good means to predict the recovery behavior. The Raman
cattering spectrometry we used did not characterize a hypo-

b

eramic Society 27 (2007) 3253–3259

hetic structural rearrangement occurring during relaxation, but
Raman spectrometry with an infrared laser or a larger focused

egion would bring more reliable information about the atomic
cale changes. Finally, viscosity values measured at room tem-
erature using the fiber bending test and those measured above
g are in agreement with those reported in previous studies
oncerning other inorganic glasses.
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ppendix A

Calculation of the evolution of the stress in a Burger’s cell dur-
ng relaxation stage. The constitutive laws of the simple elements
omposing Burger’s cell are:

el = Eεel (A.1)

η = ηε̇η (A.2)

d = Edεd + ηdε̇d (A.3)

Moreover, the way these cells are linked leads to the following
elationships:

= εel + εη + εd (A.4)

= σel = ση = σd (A.5)

ll these notations are defined in Fig. 7.
Differentiating Eq. (A.4) and using Eqs. (A.1)–(A.3), it leads

o:

˙ = 1

η
σ +

(
1

E
+ 1

Ed

)
σ̇ − ηd

Ed
ε̈d (A.6)

ε̈d can be expressed by differentiating twice both Eqs. (A.1)
nd (A.2), and injecting them in the Eq. (A.4):

¨ = 1

η
σ̇ + 1

E
σ̈ + ε̈d (A.7)

¨d = ε̈ − 1

η
σ̇ − 1

E
σ̈ (A.8)

The constitutive law of the Burger’s model is obtained by
ubstituting ε̇d, given by Eq. (A.8) in Eq. (A.6):

d

dt

[
ηd

Ed
ε̇ + ε

]
= 1

η
σ +

[
1

E
+ 1

Ed
+ ηd

ηEd

]
σ̇ + ηd

EEd
σ̈ (A.9)

During the relaxation stage, ε̇ remains constant, so Eq. (A.9)

ecomes:

ηd

EEd
σ̈ +

[
1

E
+ 1

Ed
+ ηd

η

1

Ed

]
σ̇ + 1

η
σ = 0 (A.10)
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The solution of this second order differential equation is the
ollowing equation:

(t) = σ0

α − β

[(
α − Ed

ηd

)
exp(−αt) −

(
β − Ed

ηd

)
exp(−βt)

]
(A.11)

here σ0 = ε0E, and α and β are the solutions of the subsequent
quation:

2 −
(

E

η
+ E

ηd
+ Ed

ηd

)
x + EEd

ηηd
= 0 (A.12)
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